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Consider a fluid bounded above by a free surface and below by a rigid
plane inclined at an angle a to the horizontal (see figure).

We shall assume that the flow proceeds in the direction of the x-axis,
whilst the y-axis is along the upward normal. After rendering the vari-
ables dimensionless by reference to the
mean depth of the stream h and the accelera-
tion due to gravity g, we have the following
equations describing the motion of the
viscous flwid [1 1:
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Here ¢ is the stream function, z and v are the components of velocity
parallel to the x- and y-axes respectively, p is the pressure, and ¥ is
the "“viscous depth".

Eliminating p from Equations (1) we obtain the following equation for
the stream function:
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At the bottom we have two kinematic boundary conditions

¢ == const, %:0 when y=0 3)
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At the surface y = 7, we have one kinematic

o a
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and two dynamic conditions
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It is well known that an exact solution of Equations (1) is the flow
parallel to the zx-axis

%mf_;_sina(y2—-%.y3>, Po=cos & (y — 1)

with the discharge (q in dimensional variables)

Hsina h3 sin o
Qﬁ%h;.—_o: 3 = 8o %n% 3y

It is not difficult, however, to show that such a flow is unstable for
a certain relation between H and a. Let us set

R or q

¢ = o+ 1, P =py+ P1, n=1 4.

where gbl. p; and 7, are certain small perturbations. We shall consider
perturbations of long wave type:

§y = ¢ ) eie(x-—ct), m=n eis(x-—-ct) 0!

By virtue of the assumptions which have been made concerning the
character of the perturbations, ¢ is a small quantity. Such an assumption
is physically justifiable, since in "viscous® media oscillations with
high frequency (short wave-length) are quickly damped out.

Let us substitute (7) into Equation (1) and into the boundary condi-
tions (3)-(8) (and let condition (5) be first differentiated along the
free surface). Discarding terms of the second order of smallness, we have
for ¢(y) the ordinary differential equation
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with the boundary conditions

o0, ' (0)==0, " (1) + is(e—1H sina) He' (1) = nicH cos
sil)=n{c— 1, Hsina}, e’ (1)=nllsinga

9

For the sake of brevity in the equations we do not write down terms
0(e 2), since the solution of Equation (8) will be sought in the form of
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a power series in ¢ in which we shall restrict ourselves to the first

power. This is legitimate by virtue of the fact that the equation does
not contain ¢ in the highest derivative and the boundary conditions do
not degenerate when ¢ » 0.

The general solution of Equation (8) can be written as
9 = Cyp1 -+ Cupa + Cags + Cags (10y

where ¢i are four linearly independent particular solutions of Equation
(8); for these functions, let us take
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By virtue of the first two of conditions (9), we have C1 = Cz = Q.
After substituting (10) and (11) in the remaining boundary conditions
we obtain a system of three linear equations relating the three unknowns
C3, C‘, and n. For the system to be soluble it is necessary and suffi-
cient that the determinant of the equations
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Substituting ¢ = F+ i A and separating the real and imaginary parts,
we obtain (to accuracy ¢)

Fz:Hsina, L= L cHsin?a—~.LeHcosa ’Fz“g_“\
: Ve
Here F is the Froude number. The first condition relates the velocity
of propagation of the wave to the depth of the fluig
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Here u, and U, .x Bre the mean and maximum velocities of the parallel

flow. The parallel flow is unstable if A > 0, i.e.
.;’-_. Msin®a > cosa

With allowance for the capillary effect the condition for instability
takes the form

+ 2

- COS +e’ul~_é.lﬁs‘m2a>0

where o, is the dimensionless surface-tension coefficient and 2 n/c is
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the dimensionless wave-length.
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